login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let P(i) = i-th prime. To get a(n), factor P(n)-1 as a product of primes, then concatenate the exponents.
0

%I #9 Oct 25 2015 17:33:41

%S 0,1,2,11,101,21,4,12,10001,2001,111,22,301,1101,100000001,200001,

%T 1000000001,211,11001,1011,32,110001,1000000000001,30001,51,202,

%U 1100001,1000000000000001,23,4001,1201,101001,3000001,110000001,200000000001

%N Let P(i) = i-th prime. To get a(n), factor P(n)-1 as a product of primes, then concatenate the exponents.

%C If P(n)-1 = P(1)^a * P(2)^b *....* P(j)^k then a(n) = ab...k.

%e 3-1=2^1, so a(2)=1.

%e 5-1=2^2, so a(3)=2.

%e 7-1=2^1*3^1, so a(4)=11.

%e 23=(2^1)*(11^1)+1. So a(9) = 10001.

%e 37 = 36 + 1 = 2^2*3^2 + 1, so 37 becomes 22 (a=2,b=2).

%o (PARI) {forprime(p=2,150,f=factor(p-1);j=1;q=2;s="0";while(j<=matsize(f)[1], if(q==f[j,1],s=concat(s,f[j,2]);j++,s=concat(s,0));q=nextprime(q+1));print1(eval(s),","))} \\ _Klaus Brockhaus_, Apr 25 2005

%Y Cf. A037916.

%K nonn,base

%O 1,3

%A _Pierre CAMI_, Aug 23 2004

%E More terms from _Klaus Brockhaus_, Apr 25 2005

%E a(9) corrected by Dennis (tuesdayist(AT)juno.com), Mar 30 2006