login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097133
a(n) = 3*Fibonacci(n) + (-1)^n.
4
1, 2, 4, 5, 10, 14, 25, 38, 64, 101, 166, 266, 433, 698, 1132, 1829, 2962, 4790, 7753, 12542, 20296, 32837, 53134, 85970, 139105, 225074, 364180, 589253, 953434, 1542686, 2496121, 4038806, 6534928, 10573733, 17108662, 27682394, 44791057, 72473450, 117264508
OFFSET
0,2
COMMENTS
Binomial transform is A097134.
FORMULA
G.f.: (1+2*x+2*x^2)/((1+x)*(1-x-x^2));
a(n) = 2*a(n-2)+a(n-3);
a(2*n) = 3*F(2*n)+1 = A097136(n).
MATHEMATICA
CoefficientList[Series[(1+2x+2x^2)/((1+x)(1-x-x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 2, 1}, {1, 2, 4}, 40] (* Harvey P. Dale, May 07 2011 *)
PROG
(Haskell)
a097133 n = a097133_list !! n
a097133_list = 1 : 2 : 4 : zipWith (+)
(map (* 2) $ tail a097133_list) a097133_list
-- Reinhard Zumkeller, Feb 24 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 26 2004
STATUS
approved