login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097132
a(n) = Sum_{k=0..n} Fibonacci(k) + (-1)^k*Fibonacci(k-1).
1
1, 2, 4, 5, 10, 12, 25, 30, 64, 77, 166, 200, 433, 522, 1132, 1365, 2962, 3572, 7753, 9350, 20296, 24477, 53134, 64080, 139105, 167762, 364180, 439205, 953434, 1149852, 2496121, 3010350, 6534928, 7881197, 17108662, 20633240, 44791057
OFFSET
0,2
COMMENTS
Partial sums of A097131.
FORMULA
G.f.: (1 + x - x^2 - 2*x^3)/((1 - 3*x^2 + x^4)*(1-x));
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - a(n-4) + a(n-5);
a(n) = 1 + (1/2 - sqrt(5)/2)^n*(1/2 - 3*sqrt(5)/10) - (sqrt(5)/2 - 1/2)^n*(3*sqrt(5)/10 + 1/2) + (-sqrt(5)/2 - 1/2)^n*(3*sqrt(5)/10 - 1/2) + (sqrt(5)/2 + 1/2)^n*(3*sqrt(5)/10 + 1/2);
a(2n) = 1 + 3*Fibonacci(2n) = A097136(n);
a(2n+1) = 1 + Fibonacci(2n) + Fibonacci(2n+2) = 1 + Lucas(2n).
MATHEMATICA
LinearRecurrence[{1, 3, -3, -1, 1}, {1, 2, 4, 5, 10}, 40] (* Harvey P. Dale, Nov 12 2022 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 26 2004
STATUS
approved