Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Nov 12 2022 13:48:37
%S 1,2,4,5,10,12,25,30,64,77,166,200,433,522,1132,1365,2962,3572,7753,
%T 9350,20296,24477,53134,64080,139105,167762,364180,439205,953434,
%U 1149852,2496121,3010350,6534928,7881197,17108662,20633240,44791057
%N a(n) = Sum_{k=0..n} Fibonacci(k) + (-1)^k*Fibonacci(k-1).
%C Partial sums of A097131.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-3,-1,1).
%F G.f.: (1 + x - x^2 - 2*x^3)/((1 - 3*x^2 + x^4)*(1-x));
%F a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - a(n-4) + a(n-5);
%F a(n) = 1 + (1/2 - sqrt(5)/2)^n*(1/2 - 3*sqrt(5)/10) - (sqrt(5)/2 - 1/2)^n*(3*sqrt(5)/10 + 1/2) + (-sqrt(5)/2 - 1/2)^n*(3*sqrt(5)/10 - 1/2) + (sqrt(5)/2 + 1/2)^n*(3*sqrt(5)/10 + 1/2);
%F a(2n) = 1 + 3*Fibonacci(2n) = A097136(n);
%F a(2n+1) = 1 + Fibonacci(2n) + Fibonacci(2n+2) = 1 + Lucas(2n).
%t LinearRecurrence[{1,3,-3,-1,1},{1,2,4,5,10},40] (* _Harvey P. Dale_, Nov 12 2022 *)
%Y Cf. A000032, A000045, A097131, A097136.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Jul 26 2004