login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*Fibonacci(n) + (-1)^n.
4

%I #18 Apr 11 2024 17:54:05

%S 1,2,4,5,10,14,25,38,64,101,166,266,433,698,1132,1829,2962,4790,7753,

%T 12542,20296,32837,53134,85970,139105,225074,364180,589253,953434,

%U 1542686,2496121,4038806,6534928,10573733,17108662,27682394,44791057,72473450,117264508

%N a(n) = 3*Fibonacci(n) + (-1)^n.

%C Binomial transform is A097134.

%H Reinhard Zumkeller, <a href="/A097133/b097133.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,1).

%F G.f.: (1+2*x+2*x^2)/((1+x)*(1-x-x^2));

%F a(n) = 2*a(n-2)+a(n-3);

%F a(2*n) = 3*F(2*n)+1 = A097136(n).

%t CoefficientList[Series[(1+2x+2x^2)/((1+x)(1-x-x^2)),{x,0,40}],x] (* or *) LinearRecurrence[{0,2,1},{1,2,4},40] (* _Harvey P. Dale_, May 07 2011 *)

%o (Haskell)

%o a097133 n = a097133_list !! n

%o a097133_list = 1 : 2 : 4 : zipWith (+)

%o (map (* 2) $ tail a097133_list) a097133_list

%o -- _Reinhard Zumkeller_, Feb 24 2015

%Y Cf. A000045, A097134, A097136.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Jul 26 2004