OFFSET
1,6
COMMENTS
Number of partitions p of n such that 2*min(p) + (number of parts of p) is a part of p. - Clark Kimberling, Feb 28 2014
FORMULA
G.f.: Sum_{m>0} (x^(3*m) / Product_{i>m} (1-x^i)). More generally, g.f. for number of partitions of n such that the least part occurs exactly k times is Sum_{m>0} (x^(k*m) / Product_{i>m} (1-x^i)). Vladeta Jovovic
MATHEMATICA
a[n_] := Module[{p = IntegerPartitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[p[[k]], 4]; If[q[[1]] != q[[4]] && q[[2]] == q[[4]], c++]; k++]; c]; Table[ a[n], {n, 52}]
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Length[p] + 2*Min[p]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jul 24 2004
STATUS
approved