login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097091
Number of partitions of n such that the least part occurs exactly three times.
5
0, 0, 1, 0, 1, 2, 2, 2, 6, 5, 8, 11, 15, 18, 27, 30, 43, 54, 69, 83, 113, 134, 172, 211, 265, 320, 405, 483, 602, 726, 888, 1064, 1306, 1554, 1884, 2248, 2707, 3213, 3860, 4560, 5446, 6435, 7638, 8990, 10651, 12494, 14734, 17260, 20277, 23683, 27754, 32328
OFFSET
1,6
COMMENTS
Number of partitions p of n such that 2*min(p) + (number of parts of p) is a part of p. - Clark Kimberling, Feb 28 2014
FORMULA
G.f.: Sum_{m>0} (x^(3*m) / Product_{i>m} (1-x^i)). More generally, g.f. for number of partitions of n such that the least part occurs exactly k times is Sum_{m>0} (x^(k*m) / Product_{i>m} (1-x^i)). Vladeta Jovovic
MATHEMATICA
a[n_] := Module[{p = IntegerPartitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[p[[k]], 4]; If[q[[1]] != q[[4]] && q[[2]] == q[[4]], c++]; k++]; c]; Table[ a[n], {n, 52}]
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Length[p] + 2*Min[p]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jul 24 2004
STATUS
approved