login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097088
Numerators of coefficients in function A(x) such that A(A(x)) = x+x^2.
2
0, 1, 1, -1, 1, -5, 27, -9, 171, -69, -579, 10689, -60261, 116535, -304555, 268707, 7942071, -19570935, 9537731, 1117836325, -630737297, -52310180977, 618435378229, 523526983623, -3672122551119, 8661572895987, 1205887924659627, -8604836834766111, -77855893119175779
OFFSET
0,6
COMMENTS
A097089 lists the exponents of 2 that form the reduced denominators.
LINKS
Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation A^{2^n}(x)=F(x), arXiv:1302.1986 [math.CO], 2013.
FORMULA
G.f.: A(x) = Sum_{n>=0} a(n)/2^A097089(n) where A(A(x)) = x + x^2.
a(n) = numerator(T(n,1)) if n>0, a(0) = 1, where T(n,m) = 1 if n=m, else T(n,m) = C(m,n-m) - Sum_{i=m+1..n-1} T(n,i)*T(i,m)/2. - Vladimir Kruchinin, Nov 08 2011
MATHEMATICA
T[n_, m_] := T[n, m] = If[n == m, 1, Binomial[m, n-m] - Sum[T[n, i]*T[i, m]/2, {i, m+1, n-1}]/2]; a[n_] := T[n, 1] // Numerator; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 29 2015, after Vladimir Kruchinin *)
PROG
(PARI) {a(n)=local(A, B, F=x+x^2+x*O(x^n)); A=F; if(n==0, 0, for(i=0, n, B=serreverse(A); A=(A+subst(B, x, F))/2); numerator(polcoeff(A, n, x)))}
(Maxima) T(n, m):= if n=m then 1 else (binomial(m, n-m) -sum(T(n, i) *T(i, m), i, m+1, n-1))/2; makelist(num(T(n, 1)), n, 1, 7); /* Vladimir Kruchinin, Nov 08 2011 */
CROSSREFS
Cf. A097089.
Sequence in context: A342997 A118391 A196085 * A196009 A091721 A039283
KEYWORD
sign,frac
AUTHOR
Paul D. Hanna, Jul 23 2004
STATUS
approved