OFFSET
0,3
COMMENTS
The path length is the total number of transient and recurrent terms.
After 12000 iterations, f(13!) reaches 583880633503221176888439640142607059743547704176558111997560422400000.
EXAMPLE
n=10: 10!=3628800; the trajectory is 3628800, 2972970, 2221560, 1915992, 1768767, 2877420, [1965840, 2227680, 1310680, 1591200, 1277874, 1307124, 1110488, 2010960, 1488032, 1981496, 2239920], [1965840, ...], ...; thus a(10)=17, with 6 transient and 11 recurrent states.
MATHEMATICA
f[n_] := DivisorSigma[1, EulerPhi[n]]; g[n_] := Length[ NestWhileList[ f, n, UnsameQ, All]] - 1; Table[ g[n! ], {n, 12}] (* Robert G. Wilson v, Jul 23 2004 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Labos Elemer, Jul 22 2004
EXTENSIONS
Edited by Robert G. Wilson v, Jul 23 2004
STATUS
approved