OFFSET
1,2
COMMENTS
From Altug Alkan, Apr 13 2018: (Start)
Also numerator of (2*n-1)/5.
Proof: Since 9*(n^4-2*n^3+2*n^2-n)+2 = 9*n^4-18*n^3+18*n^2-9*n+2 = (3*n^2-3*n+1)*(3*n^2-3*n+2), this is an even number. So we can see that 9*n^4-18*n^3+18*n^2-9*n+2 = (4*n^3-7*n^2+5*n-2)*(2*n-1) + n^2*(n^2+1) and we should focus on the n^2*(n^2+1)/(2*n-1) part for the denominator, n^2+1 = ((2*n-1)/4)*((2*n+1)+5/(2*n-1)) and n^2*(n^2+1)/(2*n-1) = (n^2/4)*(2*n+1+5/(2*n-1)).
Since gcd(n^2, 2*n-1) = 1 and 4 is always killed by the numerator part independent of denominator of 5/(2*n-1), the denominator of (9*(n^4-2*n^3+2*n^2-n)+2)/(2*(2*n-1)) will always be determined by the denominator of 5/(2*n-1).
In other words, this is the numerator of (2*n-1)/5. (End)
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..2000
Eric Weisstein's World of Mathematics, Magic Hexagon
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,2,0,0,0,0,-1).
FORMULA
Satisfies a linear recurrence with characteristic polynomial (1-x^5)^2.
G.f.: x*(1+x)*(1+2*x-x^2+8*x^3+x^4+8*x^5-x^6+2*x^7+x^8)/((1-x)^2*(1+x+x^2+x^3+x^4)^2). - R. J. Mathar, Mar 11 2011
EXAMPLE
1, 28/3, 38, 703/7, 1891/9, 4186/11, ...
MATHEMATICA
Table[ (9(n^4-2n^3+2n^2-n)+2)/(2(2n-1)), {n, 80}]//Denominator (* or *)
LinearRecurrence[{0, 0, 0, 0, 2, 0, 0, 0, 0, -1}, {1, 3, 1, 7, 9, 11, 13, 3, 17, 19}, 80] (* Harvey P. Dale, Aug 25 2021 *)
PROG
(PARI) a(n) = numerator((2*n-1)/5); \\ Altug Alkan, Apr 13 2018
(PARI) first(n) = my(res = vector(n, i, 2*i - 1)); forstep(i = 3, n, 5, res[i]/=5); res \\ David A. Corneth, Apr 15 2018
(Magma)
A096431:= func< n | Numerator((2*n-1)/5) >; [A096431(n): n in [1..60]]; // G. C. Greubel, Oct 14 2024
(SageMath)
def A096431(n): return numerator((2*n-1)/5)
[A096431(n) for n in range(1, 61)] # G. C. Greubel, Oct 14 2024
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Eric W. Weisstein, Aug 09 2004
STATUS
approved