login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096252
Array read by rows, starting with n=0: row n lists A057077(n+1)*8^(n+1)/2, A057077(n+2)*8^(n+1)/2, A057077(n+1)*8^(n+1).
5
4, -4, 8, -32, -32, -64, -256, 256, -512, 2048, 2048, 4096, 16384, -16384, 32768, -131072, -131072, -262144, -1048576, 1048576, -2097152, 8388608, 8388608, 16777216, 67108864, -67108864, 134217728, -536870912, -536870912, -1073741824
OFFSET
0,1
COMMENTS
a(n) = ves( ('i + 'ii' + 'ij' + 'ik')^n ) a(n) = ves( ('j + 'jj' + 'ji' + 'jk')^n ) a(n) = ves( ('k + 'kk' + 'ki' + 'kj')^n ).
The elements x = 'i + 'ii' + 'ij' + 'ik'; y = 'j + 'jj' + 'ji' + 'jk'; and z = 'k + 'kk' + 'ki' + 'kj' are elements of the ring generated from the quaternion factor space Q X Q / {(1,1), (-1,-1)}. Each is represented by a gray shaded area of "Floret's cube". The elements x/2, y/2, z/2 are members of a group, itself a subset of the real algebra generated from Q X Q / {(1,1), (-1,-1)}, which is isomorphic to Q X C_3 (order 24).
This sequence is the term-wise sum of three sequences: a(n) = ves(x^n) = jes(x^n) + les(x^n) + tes(x^n), where jes(x^n)=(1, -6, 8, -24, 16, 0, -64, 384, -512, 1536, -1024, 0, 4096, -24576, 32768, -98304, ...), les(x^n)=(3, 0, 0, 0, -48, 0 -192, 0, 0, 0, 3072, 0, 12288, 0, 0, 0, ...), tes(x^n)=(0, 2, 0, -8, 0, -64, 0, -128, 0, 512, 0, 4096, 0, 8192, 0, -32768, ...). Concerning "les"- notice that if (..., s, 0, 0, 0, t, ...), then t = -16s and if (..., s, 0, t, ...), then t = 4s.
FORMULA
a(n)= 4*a(n-2)-16*a(n-4). G.f.: 4*(1-x-2*x^2-4*x^3)/(1-4*x^2+16*x^4). - R. J. Mathar, Nov 26 2008
a(n) = (-1)^(floor((floor(n/3)+((n mod 3) mod 2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2) mod 3). - Danny Rorabaugh, May 13 2016
a(n) = 4*(-1)^floor((n+1)/2)*A138230(n). - R. J. Mathar, May 21 2019
MATHEMATICA
CoefficientList[Series[4(1-x-2x^2-4x^3)/(1-4x^2+16x^4), {x, 0, 40}], x] (* or *) LinearRecurrence[ {0, 4, 0, -16}, {4, -4, 8, -32}, 40] (* Harvey P. Dale, Feb 15 2024 *)
PROG
(Sage)
[(-1)^(floor((floor(n/3)+((n%3)%2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2)%3) for n in range(30)]
# Danny Rorabaugh, May 13 2016
CROSSREFS
Sequence in context: A019122 A019202 A137717 * A102369 A298569 A281717
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Jul 31 2004
EXTENSIONS
Edited with clearer definition by Omar E. Pol, Dec 29 2008
STATUS
approved