Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Feb 15 2024 12:12:40
%S 4,-4,8,-32,-32,-64,-256,256,-512,2048,2048,4096,16384,-16384,32768,
%T -131072,-131072,-262144,-1048576,1048576,-2097152,8388608,8388608,
%U 16777216,67108864,-67108864,134217728,-536870912,-536870912,-1073741824
%N Array read by rows, starting with n=0: row n lists A057077(n+1)*8^(n+1)/2, A057077(n+2)*8^(n+1)/2, A057077(n+1)*8^(n+1).
%C a(n) = ves( ('i + 'ii' + 'ij' + 'ik')^n ) a(n) = ves( ('j + 'jj' + 'ji' + 'jk')^n ) a(n) = ves( ('k + 'kk' + 'ki' + 'kj')^n ).
%C The elements x = 'i + 'ii' + 'ij' + 'ik'; y = 'j + 'jj' + 'ji' + 'jk'; and z = 'k + 'kk' + 'ki' + 'kj' are elements of the ring generated from the quaternion factor space Q X Q / {(1,1), (-1,-1)}. Each is represented by a gray shaded area of "Floret's cube". The elements x/2, y/2, z/2 are members of a group, itself a subset of the real algebra generated from Q X Q / {(1,1), (-1,-1)}, which is isomorphic to Q X C_3 (order 24).
%C This sequence is the term-wise sum of three sequences: a(n) = ves(x^n) = jes(x^n) + les(x^n) + tes(x^n), where jes(x^n)=(1, -6, 8, -24, 16, 0, -64, 384, -512, 1536, -1024, 0, 4096, -24576, 32768, -98304, ...), les(x^n)=(3, 0, 0, 0, -48, 0 -192, 0, 0, 0, 3072, 0, 12288, 0, 0, 0, ...), tes(x^n)=(0, 2, 0, -8, 0, -64, 0, -128, 0, 512, 0, 4096, 0, 8192, 0, -32768, ...). Concerning "les"- notice that if (..., s, 0, 0, 0, t, ...), then t = -16s and if (..., s, 0, t, ...), then t = 4s.
%H Danny Rorabaugh, <a href="/A096252/b096252.txt">Table of n, a(n) for n = 0..1000</a>
%H C. Dement, <a href="http://mathforum.org/discuss/sci.math/t/622432">The Math Forum</a>.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-16).
%F a(n)= 4*a(n-2)-16*a(n-4). G.f.: 4*(1-x-2*x^2-4*x^3)/(1-4*x^2+16*x^4). - _R. J. Mathar_, Nov 26 2008
%F a(n) = (-1)^(floor((floor(n/3)+((n mod 3) mod 2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2) mod 3). - _Danny Rorabaugh_, May 13 2016
%F a(n) = 4*(-1)^floor((n+1)/2)*A138230(n). - _R. J. Mathar_, May 21 2019
%t CoefficientList[Series[4(1-x-2x^2-4x^3)/(1-4x^2+16x^4),{x,0,40}],x] (* or *) LinearRecurrence[ {0,4,0,-16},{4,-4,8,-32},40] (* _Harvey P. Dale_, Feb 15 2024 *)
%o (Sage)
%o [(-1)^(floor((floor(n/3)+((n%3)%2)+1)/2)) * 8^(floor(n/3)+1) / 2^(((n+1)^2)%3) for n in range(30)]
%o # _Danny Rorabaugh_, May 13 2016
%Y Cf. A048473, A094015.
%K sign,easy
%O 0,1
%A _Creighton Dement_, Jul 31 2004
%E Edited with clearer definition by _Omar E. Pol_, Dec 29 2008