|
|
A096195
|
|
a(n) = number of distinct solutions to the set of equations 1 +- x +- x^2 +- ... +- x^n = 0 over the complex numbers.
|
|
1
|
|
|
2, 8, 16, 64, 106, 324, 696, 1856, 4046, 10240, 19084, 49152, 98110, 218140, 464084, 1047744, 2123446, 4718592, 9632740, 20666444
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..20.
|
|
EXAMPLE
|
a(2) = 8 because the set of equations 1 +- x +- x^2 = 0 generates 8 distinct solutions.
|
|
MATHEMATICA
|
a[n_] := a[n] = Length[Union[ Flatten[x /. Table[Solve[1 + Sum[(-1)^IntegerDigits[k, 2, n + 1][[p + 1]]x^p, {p, n}] == 0], {k, 0, 2^n - 1}]]]]; Table[a[n], {n, 10}]
|
|
CROSSREFS
|
Cf. A036289 (total number of solutions to the equations).
Sequence in context: A100243 A026523 A066792 * A094014 A098232 A354275
Adjacent sequences: A096192 A096193 A096194 * A096196 A096197 A096198
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Josh Locker (jlocker(AT)mail.rochester.edu), Jul 26 2004
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v and Labos Elemer, Jul 27 2004
a(17)-a(19) from Robert G. Wilson v, May 05 2013
a(20) from Robert G. Wilson v, May 05 2013
|
|
STATUS
|
approved
|
|
|
|