login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094014
Expansion of (1-2*x)/(1-8*x^2).
6
1, -2, 8, -16, 64, -128, 512, -1024, 4096, -8192, 32768, -65536, 262144, -524288, 2097152, -4194304, 16777216, -33554432, 134217728, -268435456, 1073741824, -2147483648, 8589934592, -17179869184, 68719476736, -137438953472
OFFSET
0,2
COMMENTS
Second inverse binomial transform of A094013. Third inverse binomial transform of A000129(2n-1).
The unsigned sequence has g.f. (1+2*x)/(1-8*x^2) and abs(a(n)) = 2^(3*n/2)*(1/2 + sqrt(2)/4 + (1/2 - sqrt(2)/4)*(-1)^n).
FORMULA
a(n) = (2*sqrt(2))^n*(1/2 - sqrt(2)/4) + (-2*sqrt(2))^n*(1/2 + sqrt(2)/4).
a(n) = (-2)^n * A016116(n). - R. J. Mathar, Apr 28 2008
Abs(a(n)) = A113836(n+1) - A113836(n) for n > 0. - Reinhard Zumkeller, Feb 22 2010
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = Sum_{k=0..n} A158020(n,k)*3^k. - Philippe Deléham, Dec 01 2011
E.g.f.: cosh(2*sqrt(2)*x) - (1/sqrt(2))*sinh(2*sqrt(2)*x). - G. C. Greubel, Dec 04 2021
MATHEMATICA
LinearRecurrence[{0, 8}, {1, -2}, 40] (* G. C. Greubel, Dec 04 2021 *)
PROG
(Magma) [n le 2 select (-2)^(n-1) else 8*Self(n-2): n in [1..41]]; // G. C. Greubel, Dec 04 2021
(Sage) [(-2)^n*2^(n//2) for n in (0..40)] # G. C. Greubel, Dec 04 2021
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Apr 21 2004
STATUS
approved