login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1-2*x)/(1-8*x^2).
6

%I #34 Sep 08 2022 08:45:13

%S 1,-2,8,-16,64,-128,512,-1024,4096,-8192,32768,-65536,262144,-524288,

%T 2097152,-4194304,16777216,-33554432,134217728,-268435456,1073741824,

%U -2147483648,8589934592,-17179869184,68719476736,-137438953472

%N Expansion of (1-2*x)/(1-8*x^2).

%C Second inverse binomial transform of A094013. Third inverse binomial transform of A000129(2n-1).

%C The unsigned sequence has g.f. (1+2*x)/(1-8*x^2) and abs(a(n)) = 2^(3*n/2)*(1/2 + sqrt(2)/4 + (1/2 - sqrt(2)/4)*(-1)^n).

%H G. C. Greubel, <a href="/A094014/b094014.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,8).

%F a(n) = (2*sqrt(2))^n*(1/2 - sqrt(2)/4) + (-2*sqrt(2))^n*(1/2 + sqrt(2)/4).

%F a(n) = (-2)^n * A016116(n). - _R. J. Mathar_, Apr 28 2008

%F Abs(a(n)) = A113836(n+1) - A113836(n) for n > 0. - _Reinhard Zumkeller_, Feb 22 2010

%F a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011

%F a(n) = Sum_{k=0..n} A158020(n,k)*3^k. - _Philippe Deléham_, Dec 01 2011

%F E.g.f.: cosh(2*sqrt(2)*x) - (1/sqrt(2))*sinh(2*sqrt(2)*x). - _G. C. Greubel_, Dec 04 2021

%t LinearRecurrence[{0,8}, {1,-2}, 40] (* _G. C. Greubel_, Dec 04 2021 *)

%o (Magma) [n le 2 select (-2)^(n-1) else 8*Self(n-2): n in [1..41]]; // _G. C. Greubel_, Dec 04 2021

%o (Sage) [(-2)^n*2^(n//2) for n in (0..40)] # _G. C. Greubel_, Dec 04 2021

%Y Cf. A000129, A016116, A094013, A113836, A158020.

%K easy,sign

%O 0,2

%A _Paul Barry_, Apr 21 2004