login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096066
Triangle read by rows, 1<=k<=n: T(n,k) is the number of occurrences of the k-th prime in partitions of the n-th prime into primes.
0
1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 10, 6, 2, 1, 1, 16, 9, 4, 2, 1, 1, 37, 22, 11, 6, 2, 1, 1, 54, 32, 15, 9, 3, 2, 1, 1, 107, 65, 32, 19, 7, 5, 2, 1, 1, 266, 165, 84, 50, 22, 15, 7, 5, 2, 1, 353, 219, 112, 69, 30, 21, 10, 7, 3, 1, 1, 779, 487, 254, 157, 73, 52, 27, 19, 10, 3, 2, 1, 1270, 795, 420, 261, 124, 90, 49, 36, 19, 7, 5, 1, 1
OFFSET
1,7
FORMULA
T(n,n) = 1.
EXAMPLE
n=5, A000040(5)=11 with A056768(5)=6 partitions into primes:
T(5,1)=10 prime(1)=2 in 7+2+2=5+2+2+2=3+3+3+2=3+2+2+2+2,
T(5,2)=6 prime(2)=3: in 5+3+3=3+3+3+2=3+2+2+2+2,
T(5,3)=2 prime(3)=5: in 5+3+3=5+2+2+2,
T(5,4)=1 prime(4)=7: in 7+2+2.
Triangle begins:
1;
0, 1;
1, 1, 1;
3, 1, 1, 1;
10, 6, 2, 1, 1;
...
MATHEMATICA
ip[p_] := ip[p] = IntegerPartitions[p, All, Select[Range[p], PrimeQ]] // Flatten;
T[n_, k_] := Count[ip[Prime[n]], Prime[k]];
Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 23 2021 *)
CROSSREFS
Cf. A056768.
Sequence in context: A080214 A263383 A185620 * A294746 A326180 A064085
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jul 21 2004
EXTENSIONS
Name modified by Jean-François Alcover, Sep 23 2021
STATUS
approved