Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 23 2021 05:08:38
%S 1,0,1,1,1,1,3,1,1,1,10,6,2,1,1,16,9,4,2,1,1,37,22,11,6,2,1,1,54,32,
%T 15,9,3,2,1,1,107,65,32,19,7,5,2,1,1,266,165,84,50,22,15,7,5,2,1,353,
%U 219,112,69,30,21,10,7,3,1,1,779,487,254,157,73,52,27,19,10,3,2,1,1270,795,420,261,124,90,49,36,19,7,5,1,1
%N Triangle read by rows, 1<=k<=n: T(n,k) is the number of occurrences of the k-th prime in partitions of the n-th prime into primes.
%F T(n,n) = 1.
%e n=5, A000040(5)=11 with A056768(5)=6 partitions into primes:
%e T(5,1)=10 prime(1)=2 in 7+2+2=5+2+2+2=3+3+3+2=3+2+2+2+2,
%e T(5,2)=6 prime(2)=3: in 5+3+3=3+3+3+2=3+2+2+2+2,
%e T(5,3)=2 prime(3)=5: in 5+3+3=5+2+2+2,
%e T(5,4)=1 prime(4)=7: in 7+2+2.
%e Triangle begins:
%e 1;
%e 0, 1;
%e 1, 1, 1;
%e 3, 1, 1, 1;
%e 10, 6, 2, 1, 1;
%e ...
%t ip[p_] := ip[p] = IntegerPartitions[p, All, Select[Range[p], PrimeQ]] // Flatten;
%t T[n_, k_] := Count[ip[Prime[n]], Prime[k]];
%t Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Sep 23 2021 *)
%Y Cf. A056768.
%K nonn,tabl
%O 1,7
%A _Reinhard Zumkeller_, Jul 21 2004
%E Name modified by _Jean-François Alcover_, Sep 23 2021