login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096020
Number of Pythagorean quintuples mod n; i.e., number of solutions to v^2 + w^2 + x^2 + y^2 = z^2 mod n.
0
1, 16, 81, 192, 625, 1296, 2401, 3072, 6723, 10000, 14641, 15552, 28561, 38416, 50625, 47104, 83521, 107568, 130321, 120000, 194481, 234256, 279841, 248832, 393125, 456976, 544563, 460992, 707281, 810000, 923521, 753664
OFFSET
1,2
EXAMPLE
x + 16 x^2 + 81 x^3 + 192 x^4 + 625 x^5 + 1296 x^6 + 2401 x^7 + ...
MATHEMATICA
Table[cnt=0; Do[If[Mod[v^2+w^2+x^2+y^2-z^2, n]==0, cnt++ ], {v, 0, n-1}, {w, 0, n-1}, {x, 0, n-1}, {y, 0, n-1}, {z, 0, n-1}]; cnt, {n, 30}]
a[ n_] := If[ n < 1, 0, Sum[ 1 - Sign[ Mod[ v^2 + w^2 + x^2 + y^2 - z^2, n]], {v, n}, {w, n}, {x, n}, {y, n}, {z, n}]]; (* Michael Somos, Jan 21 2012 *)
CROSSREFS
Cf. A062775 (number of solutions to x^2 + y^2 = z^2 mod n), A096018 (number of solutions to w^2 + x^2 + y^2 = z^2 mod n).
Sequence in context: A295071 A223951 A041490 * A016898 A224135 A265154
KEYWORD
mult,nonn
AUTHOR
T. D. Noe, Jun 15 2004
STATUS
approved