OFFSET
0,1
COMMENTS
If Y is a fixed 2-subset of a (5n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Milan Janjic, Two Enumerative Functions.
Eric Weisstein's MathWorld, Polygamma Function.
Wikipedia, Polygamma Function.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From Colin Barker, Mar 30 2017: (Start)
G.f.: (16 + 33*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
(End)
Sum_{n>=0} 1/a(n) = polygamma(1, 4/5)/25. - Amiram Eldar, Oct 02 2020
EXAMPLE
a(0) = (5*0 + 4)^2 = 16.
MATHEMATICA
Table[(5*n + 4)^2, {n, 0, 25}] (* Amiram Eldar, Oct 02 2020 *)
LinearRecurrence[{3, -3, 1}, {16, 81, 196}, 50] (* Harvey P. Dale, Jul 30 2023 *)
PROG
(Magma) [(5*n+4)^2: n in [0..70]]; // Vincenzo Librandi, May 02 2011
(PARI) Vec((16 + 33*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Mar 30 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved