The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A016898 a(n) = (5*n + 4)^2. 2
 16, 81, 196, 361, 576, 841, 1156, 1521, 1936, 2401, 2916, 3481, 4096, 4761, 5476, 6241, 7056, 7921, 8836, 9801, 10816, 11881, 12996, 14161, 15376, 16641, 17956, 19321, 20736, 22201, 23716, 25281, 26896, 28561, 30276, 32041, 33856, 35721, 37636, 39601, 41616 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS If Y is a fixed 2-subset of a (5n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007 Interleaving of A017318 and A017378. - Michel Marcus, Aug 26 2015 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Milan Janjic, Two Enumerative Functions. Eric Weisstein's MathWorld, Polygamma Function. Wikipedia, Polygamma Function. Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA From Colin Barker, Mar 30 2017: (Start) G.f.: (16 + 33*x + x^2) / (1 - x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End) Sum_{n>=0} 1/a(n) = polygamma(1, 4/5)/25. - Amiram Eldar, Oct 02 2020 EXAMPLE a(0) = (5*0 + 4)^2 = 16. MATHEMATICA Table[(5*n + 4)^2, {n, 0, 25}] (* Amiram Eldar, Oct 02 2020 *) LinearRecurrence[{3, -3, 1}, {16, 81, 196}, 50] (* Harvey P. Dale, Jul 30 2023 *) PROG (Magma) [(5*n+4)^2: n in [0..70]]; // Vincenzo Librandi, May 02 2011 (PARI) Vec((16 + 33*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Mar 30 2017 CROSSREFS Cf. A016850, A016862, A016874, A016886. Sequence in context: A223951 A041490 A096020 * A224135 A265154 A268198 Adjacent sequences: A016895 A016896 A016897 * A016899 A016900 A016901 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 15:51 EDT 2024. Contains 373389 sequences. (Running on oeis4.)