login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016898
a(n) = (5*n + 4)^2.
2
16, 81, 196, 361, 576, 841, 1156, 1521, 1936, 2401, 2916, 3481, 4096, 4761, 5476, 6241, 7056, 7921, 8836, 9801, 10816, 11881, 12996, 14161, 15376, 16641, 17956, 19321, 20736, 22201, 23716, 25281, 26896, 28561, 30276, 32041, 33856, 35721, 37636, 39601, 41616
OFFSET
0,1
COMMENTS
If Y is a fixed 2-subset of a (5n+1)-set X then a(n-1) is the number of 3-subsets of X intersecting Y. - Milan Janjic, Oct 21 2007
Interleaving of A017318 and A017378. - Michel Marcus, Aug 26 2015
LINKS
FORMULA
From Colin Barker, Mar 30 2017: (Start)
G.f.: (16 + 33*x + x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
(End)
Sum_{n>=0} 1/a(n) = polygamma(1, 4/5)/25. - Amiram Eldar, Oct 02 2020
EXAMPLE
a(0) = (5*0 + 4)^2 = 16.
MATHEMATICA
Table[(5*n + 4)^2, {n, 0, 25}] (* Amiram Eldar, Oct 02 2020 *)
LinearRecurrence[{3, -3, 1}, {16, 81, 196}, 50] (* Harvey P. Dale, Jul 30 2023 *)
PROG
(Magma) [(5*n+4)^2: n in [0..70]]; // Vincenzo Librandi, May 02 2011
(PARI) Vec((16 + 33*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Mar 30 2017
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved