login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095907
Digits in the concatenation of strings formed from a previous string by substituting "01" for "0" and "011" for "1" simultaneously at each occurrence. Start with [0].
0
0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0
OFFSET
1,1
FORMULA
a(n)=1 if n = floor(phi*m) or a(n)=0 if n = floor(phi^2*m), for some positive integer m; a(0)=0 (phi denotes the golden ratio: (1 + sqrt(5))/2). a(0)=0; a(n)=1 if n belongs to A000201 (Lower Wythoff sequence) or 0 if n belongs to A001950 (Upper Wythoff sequence).
EXAMPLE
0->01->01011->0101101011011->0101101011011010110101101101011011->... and then juxtapose: 0010101101011010110110101101011011010110101101101011011...
PROG
(PARI) v=[0]; for(n=1, 5, w=[]; for(k=1, length(v), if(v[k]==0, w=concat(w, [0, 1]), w=concat(w, [0, 1, 1]))); v=w; for(l=1, length(v), print1(v[l], ", ")))
(Python)
from math import isqrt
def A095907_gen(): # generator of terms
k = 1
for n in count(3):
m = (n+isqrt(5*n**2)>>1)
for _ in range(m-k-1):
yield 0
yield 1
k = m
A095907_list = list(islice(A095907_gen(), 30)) # Chai Wah Wu, Aug 17 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 13 2004
STATUS
approved