login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095366
Least k > 1 such that k divides 1^n + 2^n +...+ (k-1)^n.
5
3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 17, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7, 3, 5, 3, 7, 3, 5, 3, 11, 3, 5, 3, 7
OFFSET
1,1
COMMENTS
This sequence is similar to A094756 but seems to have a simpler periodicity rules:
a(n)=3 when n=1 (mod 2), otherwise
a(n)=5 when n=2 (mod 4), otherwise
a(n)=7 when n=4*m (mod 12) for some m=1,2, otherwise
a(n)=11 when n=12*m (mod 60) for some m=1,2,3,4, otherwise
a(n)=17 when n=60*m (mod 240) for some m=1,2,3, otherwise
a(n)=19 when n=240*m (mod 720) for some m=1,2, otherwise
a(n)=23 when n=720*m (mod 7920) for some m=1,..,10, etc.
Note that only odd primes p given by A095365 seem to appear in this sequence. Given the definition of f(p) in that sequence, let q=A095365(i) and p=A095365(i-1), then the general rule for this sequence seems to be a(n)=q when n=f(p)*m (mod f(q)) for some m=1,...,f(q)/f(p)-1
EXAMPLE
a(4) = 7 because k divides 1^4 + 2^4 +...+ k^4 for k=7 but no smaller k > 1.
MATHEMATICA
Table[k=2; s=0; While[s=s+(k-1)^n; Mod[s, k]>0, k++ ]; k, {n, 100}]
PROG
(PARI) A095366(n) = { my(k=1, s=0); while(1, k++; s += ((k-1)^n); if(!(s%k), return(k))); }; \\ Antti Karttunen, Dec 19 2018
CROSSREFS
Sequence in context: A260689 A328386 A378640 * A029604 A079602 A075572
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 03 2004
STATUS
approved