The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095364 Number of walks of length n between two adjacent nodes in the cycle graph C_9. 0
 1, 0, 3, 0, 10, 0, 35, 1, 126, 11, 462, 78, 1716, 455, 6435, 2380, 24311, 11628, 92398, 54264, 352947, 245157, 1354102, 1081575, 5215250, 4686826, 20156580, 20030039, 78152535, 84672780, 303906051, 354822776, 1184959314, 1476390160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS In general 2^n/m*Sum(r,0,m-1,Cos(2Pi*k*r/m)Cos(2Pi*r/m)^n) is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=9 and k=1. LINKS FORMULA a(n) = 2^n/9 * sum(r=0..8, cos(2*Pi*r/9)^(n+1)). G.f.: x(-1+x+2x^2-x^3)/((1+x)(-1+2x)(1-3x^2+x^3)). a(n) = a(n-1) + 5*a(n-2) - 4*a(n-3) - 5*a(n-4) + 2*a(n-5). PROG (PARI) a(n) = round(2^n/9*sum(r=0, 8, cos(2*Pi*r/9)^(n+1))) \\ Michel Marcus, Jul 18 2013 (PARI) Vec( x*(-1+x+2*x^2-x^3)/((1+x)*(-1+2*x)*(1-3*x^2+x^3))+O(x^66) ) \\ Joerg Arndt, Jul 18 2013 CROSSREFS Sequence in context: A094472 A028850 A138364 * A094052 A161678 A232267 Adjacent sequences:  A095361 A095362 A095363 * A095365 A095366 A095367 KEYWORD nonn AUTHOR Herbert Kociemba, Jul 03 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 02:31 EDT 2021. Contains 347504 sequences. (Running on oeis4.)