login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095100
Integers m of the form 4k+3 for which all sums Sum_{i=1..u} J(i/m) (with u ranging from 1 to (m-1)) are nonnegative, where J(i/m) is Jacobi symbol of i and m.
9
3, 7, 11, 15, 23, 27, 31, 35, 39, 47, 55, 59, 63, 71, 75, 79, 83, 87, 95, 103, 111, 119, 131, 135, 143, 151, 159, 167, 171, 175, 183, 191, 199, 215, 231, 239, 243, 251, 255, 263, 271, 279, 287, 295, 299, 303, 311, 319, 327, 335, 343, 351, 359, 363
OFFSET
1,1
COMMENTS
Integers whose Jacobi-vector forms a valid Motzkin-path.
FORMULA
a(n) = 4*A095274(n) + 3.
MATHEMATICA
isMotzkin[n_, k_] := Module[{s = 0, r = True}, Do[s += JacobiSymbol[i, n]; If[s < 0, r = False; Break[]], {i, 1, k}]; r]; A095100[n_] := Select[4*Range[0, n+1]+3, isMotzkin[#, Quotient[#, 2]] &]; A095100[90] (* Jean-François Alcover, Oct 08 2013, translated from Sage *)
PROG
(Sage)
def is_Motzkin(n, k):
s = 0
for i in range(1, k + 1) :
s += jacobi_symbol(i, n)
if s < 0: return False
return True
def A095100_list(n):
return [m for m in range(3, n + 1, 4) if is_Motzkin(m, m // 2)]
A095100_list(363) # Peter Luschny, Aug 08 2012
(PARI) isok(m) = {if(m%4<3, return(0)); my(s=0); for(i=1, m-1, if((s+=kronecker(i, m))<0, return(0))); 1; } \\ Jinyuan Wang, Jul 20 2020
CROSSREFS
Subset of A095102. Complement of A095101 in A004767.
Cf. A095090.
Sequence in context: A246559 A246521 A160785 * A036994 A243115 A279106
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 01 2004
STATUS
approved