|
|
A094887
|
|
Decimal expansion of phi*sqrt(2), where phi = (1+sqrt(5))/2.
|
|
1
|
|
|
2, 2, 8, 8, 2, 4, 5, 6, 1, 1, 2, 7, 0, 7, 3, 7, 1, 9, 0, 4, 0, 0, 2, 9, 1, 1, 3, 4, 3, 2, 1, 2, 0, 8, 3, 0, 6, 1, 4, 4, 6, 1, 3, 5, 0, 7, 3, 5, 1, 0, 8, 2, 4, 5, 0, 0, 1, 7, 0, 9, 2, 2, 9, 5, 3, 9, 1, 6, 6, 3, 4, 5, 8, 5, 5, 0, 6, 7, 2, 6, 3, 0, 0, 9, 7, 3, 1, 7, 8, 2, 1, 3, 5, 3, 4, 7, 0, 9, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
An algebraic number with minimal polynomial x^4 - 6x^2 + 4. - Charles R Greathouse IV, Mar 25 2014
The rhombus with diagonals phi*sqrt(2) and sqrt(2) is the unique golden rhombus -- by definition, the ratio of the diagonals of a golden rhombus is phi -- whose area is also phi (the golden ratio). - Rick L. Shepherd, Apr 10 2017
|
|
LINKS
|
Ivan Panchenko, Table of n, a(n) for n = 1..1000
MathWorld, Golden Rhombus
|
|
EXAMPLE
|
2.28824561127073719...
|
|
MATHEMATICA
|
RealDigits[GoldenRatio Sqrt[2], 10, 120][[1]] (* Harvey P. Dale, Jan 24 2016 *)
|
|
PROG
|
(PARI) sqrt(3+sqrt(5)) \\ Charles R Greathouse IV, Mar 25 2014
(MAGMA) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(2)*(1 + Sqrt(5))/2; // G. C. Greubel, Sep 27 2018
|
|
CROSSREFS
|
Cf. A001622 (phi), A002193 (sqrt(2)).
Sequence in context: A269545 A258983 A195138 * A021441 A196066 A334574
Adjacent sequences: A094884 A094885 A094886 * A094888 A094889 A094890
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
N. J. A. Sloane, Jun 15 2004
|
|
STATUS
|
approved
|
|
|
|