OFFSET
1,2
COMMENTS
Index of the first occurrence of n in A094293.
For n >= 3, a(n) is also the number of the minimal nonobtuse binary triangulations of the unit n-cube (see Brandts et al. link).
LINKS
Jan Brandts, Sander Dijkhuis, Vincent de Haan, and Michal Křížek, There are only two nonobtuse binary triangulations of the unit n-cube, arXiv:1209.3875 [math.CO] and Comput. Geom. 46 (2013) 286.
FORMULA
a(n+1) = (n+1)*a(n) - n + 1, or a(n) = n*a(n-1) - (n-2). [Corrected by M. F. Hasler, Apr 09 2009]
a(n) = 1 + Sum_{k=2..n} n!/k! = ceiling(n!*(e-2)). - Michel Marcus, Sep 19 2012
Conjecture: (-n+3)*a(n) + (n^2-2*n-2)*a(n-1) - (n-1)*(n-2)*a(n-2) = 0. - R. J. Mathar, Sep 10 2015
EXAMPLE
From M. F. Hasler, Apr 09 2009: (Start)
a(1) = 1;
a(2) = 2*a(1) - 0 = 2;
a(3) = 3*a(2) - 1 = 5;
a(4) = 4*a(3) - 2 = 18;
a(5) = 5*a(4) - 3 = 87. (End)
MAPLE
A094294 := proc(n)
option remember;
if n =1 then
1 ;
else
n*procname(n-1)-n+2 ;
end if;
end proc: # R. J. Mathar, Feb 06 2016
MATHEMATICA
a[1] = 1; a[n_] := a[n] = n*a[n - 1] - n + 2;
Array[a, 23] (* Jean-François Alcover, Dec 14 2017 *)
PROG
(PARI) A094294(n)={ local(a=1); for( k=2, n, a=k*a-k+2); a } \\ M. F. Hasler, Apr 09 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, Apr 28 2004
EXTENSIONS
Edited, corrected and extended by M. F. Hasler, Apr 09 2009
STATUS
approved