OFFSET
3,3
FORMULA
a(n) = Floor[N[n*(n-1)^s(n)]] with s(n)=(Log[g[n]]-Log[n])/Log[n-1] and g[n]=(n*Pi*Log[n]-Sqrt[n^2*Pi+2*Pi^2*n])/Pi.
a(n) ~ n log n. - Charles R Greathouse IV, Aug 24 2022
MATHEMATICA
g[n_]=(n*Pi*Log[n]-Sqrt[n^2*Pi+2*Pi^2*n])/Pi f[n_]=(Log[g[n]]-Log[n])/Log[n-1] a=Table[Floor[N[n*(n-1)^fa[n]]], {n, 3, 200}]
PROG
(PARI) s(n)=log(log(n) - sqrt(1/Pi+2/n))/log(n-1)
a(n)=n*(n-1)^s(n)\1 \\ Charles R Greathouse IV, Aug 24 2022
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Roger L. Bagula, May 28 2004
STATUS
approved