login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093652
Let a(1) = 1, a(2) = 2, a(3) = 7, a(4) = 15 and for n >= 5 set a(n) = (n*b(n) - b(n-2)) / 2, where b(n) = 4*b(n-2) - b(n-4) for n >= 5 and b(1) = 1, b(2) = 2, b(3) = 5, b(4) = 8.
3
1, 2, 7, 15, 45, 86, 239, 433, 1157, 2034, 5307, 9151, 23497, 39974, 101467, 170913, 430089, 718946, 1796975, 2985775, 7422437, 12272502, 30373191, 50016721, 123327373, 202395986, 497484067, 814061151, 1995542913, 3257222726, 7965875891, 12973832257, 31663779857
OFFSET
1,2
COMMENTS
a(n)/b(n) gives the ohm value of a ladder of unit resistors measured from opposite corners. The ladder is best described as a line of n squares, where every segment has a resistance of 1 ohm.
1/(n - 2*a(n)/b(n)) approaches 2 + sqrt(3) as n increases.
LINKS
Harri Aaltonen, Apr 18 2008, Table of n, a(n) for n = 1..50 [a(49) corrected by Georg Fischer, Mar 13 2020]
FORMULA
Conjecture: b(n) = A082630(n). If true, we can write a(n) = (n*A082630(n) - A082630(n-2)) / 2.
From Colin Barker, Dec 20 2019: (Start)
G.f.: x*(1 + 2*x - x^2 - x^3 + 7*x^4 + 2*x^5 - 3*x^6 - x^7) / (1 - 4*x^2 + x^4)^2.
a(n) = 8*a(n-2) - 18*a(n-4) + 8*a(n-6) - a(n-8) for n>8.
(End)
MAPLE
a_list := proc(last) local B, C, k;
B := [1, 2, 5, 8];
C := [1, 2, 7, 15];
for k from 5 to last do
B := [op(B), 4*B[k-2]-B[k-4]];
C := [op(C), (k*B[k]-B[k-2])/2];
od;
C end:
a_list(50); # After Harri Aaltonen, Peter Luschny, Mar 14 2020
MATHEMATICA
LinearRecurrence[{0, 8, 0, -18, 0, 8, 0, -1}, {1, 2, 7, 15, 45, 86, 239, 433}, 50] (* Jean-François Alcover, Oct 24 2023 *)
CROSSREFS
Cf. A082630.
Sequence in context: A065506 A330454 A121165 * A200862 A096690 A279286
KEYWORD
nonn,easy
AUTHOR
Harri Aaltonen, May 15 2004, Apr 12 2008
EXTENSIONS
Edited by Peter Luschny, Jun 14 2021
STATUS
approved