Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Oct 24 2023 03:21:35
%S 1,2,7,15,45,86,239,433,1157,2034,5307,9151,23497,39974,101467,170913,
%T 430089,718946,1796975,2985775,7422437,12272502,30373191,50016721,
%U 123327373,202395986,497484067,814061151,1995542913,3257222726,7965875891,12973832257,31663779857
%N Let a(1) = 1, a(2) = 2, a(3) = 7, a(4) = 15 and for n >= 5 set a(n) = (n*b(n) - b(n-2)) / 2, where b(n) = 4*b(n-2) - b(n-4) for n >= 5 and b(1) = 1, b(2) = 2, b(3) = 5, b(4) = 8.
%C a(n)/b(n) gives the ohm value of a ladder of unit resistors measured from opposite corners. The ladder is best described as a line of n squares, where every segment has a resistance of 1 ohm.
%C 1/(n - 2*a(n)/b(n)) approaches 2 + sqrt(3) as n increases.
%H Harri Aaltonen, Apr 18 2008, <a href="/A093652/b093652.txt">Table of n, a(n) for n = 1..50</a> [a(49) corrected by _Georg Fischer_, Mar 13 2020]
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,8,0,-18,0,8,0,-1).
%H <a href="/index/Res#resistances">Index to sequences related to resistances</a>.
%F Conjecture: b(n) = A082630(n). If true, we can write a(n) = (n*A082630(n) - A082630(n-2)) / 2.
%F From _Colin Barker_, Dec 20 2019: (Start)
%F G.f.: x*(1 + 2*x - x^2 - x^3 + 7*x^4 + 2*x^5 - 3*x^6 - x^7) / (1 - 4*x^2 + x^4)^2.
%F a(n) = 8*a(n-2) - 18*a(n-4) + 8*a(n-6) - a(n-8) for n>8.
%F (End)
%p a_list := proc(last) local B, C, k;
%p B := [1,2,5, 8];
%p C := [1,2,7,15];
%p for k from 5 to last do
%p B := [op(B), 4*B[k-2]-B[k-4]];
%p C := [op(C), (k*B[k]-B[k-2])/2];
%p od;
%p C end:
%p a_list(50); # After _Harri Aaltonen_, _Peter Luschny_, Mar 14 2020
%t LinearRecurrence[{0, 8, 0, -18, 0, 8, 0, -1}, {1, 2, 7, 15, 45, 86, 239, 433}, 50] (* _Jean-François Alcover_, Oct 24 2023 *)
%Y Cf. A082630.
%K nonn,easy
%O 1,2
%A _Harri Aaltonen_, May 15 2004, Apr 12 2008
%E Edited by _Peter Luschny_, Jun 14 2021