

A092893


Smallest starting value in a Collatz '3x+1' sequence such that the sequence contains exactly n tripling steps.


6



1, 5, 3, 17, 11, 7, 9, 25, 33, 43, 57, 39, 105, 135, 185, 123, 169, 219, 159, 379, 283, 377, 251, 167, 111, 297, 395, 263, 175, 233, 155, 103, 137, 91, 121, 161, 107, 71, 47, 31, 41, 27, 73, 97, 129, 171, 231, 313, 411, 543, 731, 487, 327, 859, 1145, 763, 1017, 1351
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

First occurrence of n in A006667.
These are the odd (primitive) terms in A129304.  T. D. Noe, Apr 09 2007


LINKS

T. D. Noe, Table of n, a(n) for n=0..300
Jeffrey R. Goodwin, The 3x+1 Problem and Integer Representations, Arxiv preprint arXiv:1504.03040 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Collatz Problem
Index entries for sequences related to 3x+1 (or Collatz) problem


EXAMPLE

a(4)=11 because the Collatz sequence 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 is the first sequence containing 4 tripling steps.


MATHEMATICA

a[n_]:=Length[Select[NestWhileList[If[EvenQ[#], #/2, 3#+1] &, n, #>1 &], OddQ]]; Table[i=1; While[a[i]!=n, i=i+2]; i, {n, 58}] (* Jayanta Basu, May 27 2013 *)


CROSSREFS

Cf. A006667, A092892, A087228.
Sequence in context: A105201 A184537 A187809 * A133172 A075453 A073845
Adjacent sequences: A092890 A092891 A092892 * A092894 A092895 A092896


KEYWORD

nonn


AUTHOR

Hugo Pfoertner, Mar 11 2004


STATUS

approved



