login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092833
Expansion of q / (chi(-q) * chi(-q^23)) in powers of q where chi() is a Ramanujan theta function.
3
1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, 46, 54, 64, 76, 89, 105, 123, 143, 167, 194, 225, 260, 301, 346, 398, 458, 524, 600, 686, 782, 891, 1014, 1151, 1306, 1480, 1674, 1892, 2137, 2409, 2713, 3053, 3431, 3852, 4322, 4842, 5421, 6064, 6776
OFFSET
1,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q)(A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: x * (Product_{k>0} (1 + x^k) * (1 + x^(23*k))).
Expansion of eta(q^2) * eta(q^46) / (eta(q) * eta(q^23)) in powers of q.
Euler transform of period 46 sequence with g.f. x / (1 - x^2) + x^23 / (1 - x^46).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 2 * u*v * (1 + v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (46 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A132322.
Convolution inverse of A132322.
a(n) = A112216(2*n). - Michael Somos, Aug 11 2015
a(n) ~ exp(2*Pi*sqrt(2*n/23)) / (2^(7/4) * 23^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
EXAMPLE
G.f. = q + q^2 + q^3 + 2*q^4 + 2*q^5 + 3*q^6 + 4*q^7 + 5*q^8 + 6*q^9 + 8*q^10 + ...
MATHEMATICA
a[n_] := Coefficient[ Series[ x*Product[(1 + x^k)*(1 + x^(23*k)), {k, 1, n}], {x, 0, n}], x, n]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jan 28 2013, from 1st formula *)
a[ n_] := SeriesCoefficient[ q Product[ (1 + q^k) (1 + q^(23 k)), {k, n}], {q, 0, n}]; (* Michael Somos, Aug 11 2015 *)
a[ n_] := SeriesCoefficient[ q (QPochhammer[ -q, q] QPochhammer[ -q^23, q^23]), {q, 0, n}]; (* Michael Somos, Aug 11 2015 *)
PROG
(PARI) {a(n) = my(A, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = A + A^2 + sqrt(A + (A + A^2)^2)); polcoeff(A, n))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^46 + A) / eta(x + A) / eta(x^23 + A), n))};
CROSSREFS
Sequence in context: A000009 A081360 A117409 * A280664 A100926 A351008
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 06 2004
STATUS
approved