Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Mar 12 2021 22:24:42
%S 1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,27,32,38,46,54,64,76,89,105,123,
%T 143,167,194,225,260,301,346,398,458,524,600,686,782,891,1014,1151,
%U 1306,1480,1674,1892,2137,2409,2713,3053,3431,3852,4322,4842,5421,6064,6776
%N Expansion of q / (chi(-q) * chi(-q^23)) in powers of q where chi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q)(A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A092833/b092833.txt">Table of n, a(n) for n = 1..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F G.f.: x * (Product_{k>0} (1 + x^k) * (1 + x^(23*k))).
%F Expansion of eta(q^2) * eta(q^46) / (eta(q) * eta(q^23)) in powers of q.
%F Euler transform of period 46 sequence with g.f. x / (1 - x^2) + x^23 / (1 - x^46).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 2 * u*v * (1 + v).
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (46 t)) = (1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A132322.
%F Convolution inverse of A132322.
%F a(n) = A112216(2*n). - _Michael Somos_, Aug 11 2015
%F a(n) ~ exp(2*Pi*sqrt(2*n/23)) / (2^(7/4) * 23^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2015
%e G.f. = q + q^2 + q^3 + 2*q^4 + 2*q^5 + 3*q^6 + 4*q^7 + 5*q^8 + 6*q^9 + 8*q^10 + ...
%t a[n_] := Coefficient[ Series[ x*Product[(1 + x^k)*(1 + x^(23*k)), {k, 1, n}], {x, 0, n}], x, n]; Table[a[n], {n, 1, 56}] (* _Jean-François Alcover_, Jan 28 2013, from 1st formula *)
%t a[ n_] := SeriesCoefficient[ q Product[ (1 + q^k) (1 + q^(23 k)), {k, n}], {q, 0, n}]; (* _Michael Somos_, Aug 11 2015 *)
%t a[ n_] := SeriesCoefficient[ q (QPochhammer[ -q, q] QPochhammer[ -q^23, q^23]), {q, 0, n}]; (* _Michael Somos_, Aug 11 2015 *)
%o (PARI) {a(n) = my(A, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A = A + A^2 + sqrt(A + (A + A^2)^2)); polcoeff(A, n))};
%o (PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^46 + A) / eta(x + A) / eta(x^23 + A), n))};
%Y Cf. A112216, A132322.
%K nonn
%O 1,4
%A _Michael Somos_, Mar 06 2004