login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A092593
a(n) is the smallest number k > 1 for which A001142(k)/A002944(k+1)^n is an integer.
1
2, 3, 9, 9, 15, 15, 38, 45, 45, 45, 61, 61, 225, 225, 225, 225, 225, 225, 225, 225, 225, 225, 635, 635, 1545, 1545, 1545, 1545, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2137, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660, 2660
OFFSET
1,1
COMMENTS
a(62) > 12500. - Robert Israel, Jan 24 2019
EXAMPLE
n=4, A001142(9) = 1*9*36*...*9*1 = 11759522374656,
A002944(10) = lcm(1,2,...,10)/10=252 and A001142(9) = 2916*(252^4) = 11759522374656,
so a(4)=9, the smallest relevant number.
MAPLE
A001142:= proc(n) option remember; procname(n-1)*n^(n-1)/(n-1)! end proc:
A001142(0):= 1:
A002944:= proc(n) option remember; ilcm(n, procname(n-1)*(n-1))/n end proc:
A002944(1):= 1:
f:= proc(n) option remember; local k;
for k from procname(n-1) do
if type(A001142(k)/A002944(k+1)^n, integer) then return k fi
od
end proc:
f(1):= 2:
map(f, [$1..61]); # Robert Israel, Jan 23 2019
MATHEMATICA
Table[fla=1; Do[s1=Apply[Times, Table[Binomial[n, j], {j, 0, n}]]; s2=Apply[LCM, Table[Binomial[n, j], {j, 0, n}]]; If[IntegerQ[s1/(s2^k)]&&!Equal[n, 1]&&Equal[fla, 1], Print[{n, k}]; fla=0], {n, 1, 230}], {k, 1, 25}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 10 2004
EXTENSIONS
Corrected and extended by Robert Israel, Jan 23 2019
STATUS
approved