login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092094 a(n) = Sum_{i=0,1,2,..; n-k*i >= -n} |n-k*i| for k=3. 1
7, 12, 18, 19, 27, 36, 37, 48, 60, 61, 75, 90, 91, 108, 126, 127, 147, 168, 169, 192, 216, 217, 243, 270, 271, 300, 330, 331, 363, 396, 397, 432, 468, 469, 507, 546, 547, 588, 630, 631, 675, 720, 721, 768, 816, 817, 867, 918, 919, 972, 1026, 1027, 1083, 1140 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

REFERENCES

F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.

F. Smarandache, Back and Forth Summants, Arizona State Univ., Special Collections, 1972.

LINKS

Table of n, a(n) for n=4..57.

J. Dezert, ed., Smarandacheials (1), Mathematics Magazine for Grades 1-12, No. 4, 2004.

J. Dezert, ed., Smarandacheials (2), Mathematics Magazine for Grades 1-12, No. 4, 2004.

F. Smarandache, Summants [Broken link]

FORMULA

S_abs(n, 3) = Sigma_{i=0, 1, 2, ...}_{0<abs(n-3i)<=n}(abs(n-3i)) = n+abs(n-3)+abs(n-6)+ ...

Empirical g.f.: -x^4*(6*x^6-3*x^5-2*x^4-13*x^3+6*x^2+5*x+7) / ((x-1)^3*(x^2+x+1)^2). - Colin Barker, Jul 28 2013

EXAMPLE

S_abs(7, 3) = 7+abs(7-3)+abs(7-6)+abs(7-9)+abs(7-12) = 7+4+1+2+5 = 19.

MAPLE

S := proc(n, k) local a, i ; a :=0 ; i := 0 ; while n-k*i >= -n do a := a+abs(n-k*i) ; i := i+1 ; od: RETURN(a) ; end: k := 3: seq(S(n, 3), n=k+1..80) ; # R. J. Mathar, Feb 01 2008

MATHEMATICA

S[n_, k_] := Module[{a = 0, i = 0}, While[n - k i >= -n, a += Abs[n - k i]; i++]; a];

Table[S[n, 3], {n, 4, 80}] (* Jean-Fran├žois Alcover, Apr 05 2020, from Maple *)

CROSSREFS

Cf. A001044, A092396, A092397, A092398, A092399, A092971, A092972, A092973, A092974.

Sequence in context: A183046 A272785 A272808 * A064665 A142337 A131912

Adjacent sequences:  A092091 A092092 A092093 * A092095 A092096 A092097

KEYWORD

nonn

AUTHOR

Jahan Tuten (jahant(AT)indiainfo.com), Mar 29 2004

EXTENSIONS

Edited and extended by R. J. Mathar, Feb 01 2008

Definition clarified by N. J. A. Sloane, Jul 03 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 02:18 EDT 2022. Contains 353933 sequences. (Running on oeis4.)