login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091748
Generalized Bell numbers B_{6,2}.
3
1, 43, 5083, 1160113, 432168721, 238012552651, 181520958432283, 182989529196234433, 235492729726705299073, 376560458072018837889931, 732162019709408940671604091, 1700645336651586566571229542193
OFFSET
1,2
REFERENCES
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.
FORMULA
a(n)=sum(A091746(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+4*(j-1), 2), j=1..n), k=2..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=6, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
MATHEMATICA
a[n_] := Sum[Product[FactorialPower[k+4*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* Jean-François Alcover, Sep 01 2016 *)
CROSSREFS
Cf. A072019 ( B_{5, 2}).
Sequence in context: A060485 A081795 A108837 * A208625 A147522 A183489
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 27 2004
STATUS
approved