login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Generalized Bell numbers B_{6,2}.
3

%I #8 Sep 01 2016 10:22:04

%S 1,43,5083,1160113,432168721,238012552651,181520958432283,

%T 182989529196234433,235492729726705299073,376560458072018837889931,

%U 732162019709408940671604091,1700645336651586566571229542193

%N Generalized Bell numbers B_{6,2}.

%D P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.

%D M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

%F a(n)=sum(A091746(n, k), k=2..2*n)= sum((1/k!)*product(fallfac(k+4*(j-1), 2), j=1..n), k=2..infinity)/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=6, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.

%t a[n_] := Sum[Product[FactorialPower[k+4*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 12}] (* _Jean-François Alcover_, Sep 01 2016 *)

%Y Cf. A072019 ( B_{5, 2}).

%K nonn,easy

%O 1,2

%A _Wolfdieter Lang_, Feb 27 2004