login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091728
Number of prime ideals of Z[sqrt(-5)] of norm n.
3
0, 1, 2, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
1,3
COMMENTS
It follows that the total number of ideals of norm n is A035170(n).
REFERENCES
David A. Cox, Primes of the form x^2+ny^2, Wiley, 1989.
A. Frohlich and M. J. Taylor, Algebraic number theory, Cambridge university press, 1991.
LINKS
FORMULA
a(n)=0 if n is not in A091727. If n is in A091727 and n is 2, 5 or a square then a(n)=1. Otherwise a(n)=2.
PROG
(PARI)
isA091727(n) = { my(ms = [1, 2, 3, 5, 7, 9], p, e=isprimepower(n, &p)); if(!e || e>2, 0, bitxor(e-1, !!vecsearch(ms, p%20))); };
A091728(n) = if(!isA091727(n), 0, (2-((2==n)||(5==n)||issquare(n)))); \\ Antti Karttunen, Feb 24 2020
CROSSREFS
Sequence in context: A357293 A357119 A357883 * A108069 A227837 A263099
KEYWORD
easy,nonn
AUTHOR
Paul Boddington, Feb 02 2004
EXTENSIONS
Data section extended up to a(121) by Antti Karttunen, Feb 24 2020
STATUS
approved