The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091684 a(n) = 0 if n is divisible by 3, otherwise a(n) = n. 5
 0, 1, 2, 0, 4, 5, 0, 7, 8, 0, 10, 11, 0, 13, 14, 0, 16, 17, 0, 19, 20, 0, 22, 23, 0, 25, 26, 0, 28, 29, 0, 31, 32, 0, 34, 35, 0, 37, 38, 0, 40, 41, 0, 43, 44, 0, 46, 47, 0, 49, 50, 0, 52, 53, 0, 55, 56, 0, 58, 59, 0, 61, 62, 0, 64, 65, 0, 67, 68, 0, 70, 71, 0, 73, 74, 0, 76, 77, 0, 79, 80 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Multiplicative with a(3^e) = 0, a(p^e) = p^e otherwise. - Mitch Harris, Jun 09 2005 Completely multiplicative with a(3) = 0, a(p) = p otherwise. - Charles R Greathouse IV, Feb 21 2011 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Index entries for linear recurrences with constant coefficients, signature (0,0,2,0,0,-1). FORMULA a(n) = Product_{k=0..2} Sum_{j=1..n} w(3)^(k*j), w(3)=e^(2*Pi*i/3), i=sqrt(-1). a(n) = 2*n/3 - n*sin(2*Pi*n/3 + Pi/3)/sqrt(3) - n*cos(2*Pi*n/3 + Pi/3)/3. G.f.: x*(x^4 + 2*x^3 + 2*x + 1)/((x^2 + x + 1)^2*(x - 1)^2). - Ralf Stephan, Jan 29 2004 a(n) = n^3 mod 3n. - Paul Barry, Apr 13 2005 Dirichlet g.f.: zeta(s-1)*(1-1/3^(s-1)). - R. J. Mathar, Feb 10 2011 a(3*n) = 0, a(3*n + 1) = 3*n + 1, a(3*n + 2) = 3*n + 2. a(-n) = -a(n). - Michael Somos, Mar 19 2011 a(n) = n * sign(n mod 3). - Wesley Ivan Hurt, Sep 24 2017 EXAMPLE x + 2*x^2 + 4*x^4 + 5*x^5 + 7*x^7 + 8*x^8 + 10*x^10 + 11*x^11 + 13*x^13 + ... MATHEMATICA f[n_] := If[ Mod[n, 3] == 0, 0, n] (* Or *) n (Fibonacci[n] - 2 Floor[ Fibonacci[n]/2]); Array[f, 78, 0] (* Robert G. Wilson v *) {#, 0, #}[[Mod[#-1, 3, 1]]]&/@Range[0, 99] (* Federico Provvedi, Jun 15 2021 *) PROG (PARI) a(n)=if(n%3, n) \\ Charles R Greathouse IV, Feb 21 2011 (PARI) {a(n) = n * sign( n%3)} /* Michael Somos, Mar 19 2011 */ (MAGMA) &cat[[0, 3*n+1, 3*n+2]: n in [0..26]];  // Bruno Berselli, Aug 29 2011 CROSSREFS Cf. A008585, A100050. Sequence in context: A266587 A070692 A162397 * A100050 A164616 A258100 Adjacent sequences:  A091681 A091682 A091683 * A091685 A091686 A091687 KEYWORD nonn,mult,easy AUTHOR Paul Barry, Jan 28 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 22:42 EST 2021. Contains 349526 sequences. (Running on oeis4.)