login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091561
Expansion of (1-2x-sqrt(1-4x+4x^2-4x^3))/(2x^2).
3
1, 2, 4, 9, 22, 56, 146, 388, 1048, 2869, 7942, 22192, 62510, 177308, 506008, 1451866, 4185788, 12119696, 35227748, 102753800, 300672368, 882373261, 2596389190, 7658677856, 22642421206, 67081765932, 199128719896, 592179010350
OFFSET
1,2
FORMULA
G.f.: (1-2x-sqrt(1-4x+4x^2-4x^3))/(2x^2).
a(n) = 2*a(n-1)+a(1)*a(n-3)+a(2)*a(n-4)+...+a(n-3)*a(1) for n>1.
Series reversion of g.f. A(x) is -A(-x).
G.f. A(x) satisfies 0=f(x, A(x)) where f(x, y)=(xy)^2+2(xy)-(y-x).
Conjecture: (n+2)*a(n) -2*(2*n+1)*a(n-1) +4*(n-1)*a(n-2) +2*(5-2*n)*a(n-3)=0. - R. J. Mathar, Aug 14 2012
MATHEMATICA
CoefficientList[Series[(1-2x-Sqrt[1-4x+4x^2-4x^3])/(2x^2), {x, 0, 30}], x] (* Harvey P. Dale, Jan 31 2015 *)
PROG
(PARI) a(n)=polcoeff((1-2*x-sqrt(1-4*x+4*x^2-4*x^3+x^3*O(x^n)))/2, n+2)
CROSSREFS
Sequence in context: A352702 A055588 A088456 * A025265 A152225 A037245
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 20 2004
STATUS
approved