login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091429
Numerator of a(n) = (integral_{x=0..1/3} (1-x^2)^n dx).
1
1, 26, 1128, 68592, 5368704, 514149120, 58253091840, 7623288207360, 1131761338122240, 187970402507489280, 34537682442564403200, 6956566802152095744000, 1524349874113331960217600
OFFSET
0,2
COMMENTS
The denominator is b(n)= (2*n+2)!*3^(2*n+1)/((n+1)!*2^(n+1)).
FORMULA
c(n)=[(2n+2)!*3^(2n+1)/[(n+1)!*2^(n+1)]]int((1-x^2)^n, x=0..1/3). - Emeric Deutsch, Mar 15 2004
MAPLE
c := n->((2*n+2)!*3^(2*n+1)/((n+1)!*2^(n+1)))*int((1-x^2)^n, x=0..1/3): seq(c(n), n=0..18);
MATHEMATICA
A091429[n_] := Integrate[(1 - x^2)^n, {x, 0, 1/3}](2n + 2)!*3^(2n + 1)/((n + 1)!*2^(n + 1)); Table[ A091429[n], {n, 0, 13}] (* Robert G. Wilson v, Mar 15 2004 *)
CROSSREFS
Sequence in context: A241874 A330497 A037138 * A200721 A187463 A160311
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
EXTENSIONS
More terms from Robert G. Wilson v and Emeric Deutsch, Mar 15 2004
STATUS
approved