login
A091429
Numerator of a(n) = (integral_{x=0..1/3} (1-x^2)^n dx).
1
1, 26, 1128, 68592, 5368704, 514149120, 58253091840, 7623288207360, 1131761338122240, 187970402507489280, 34537682442564403200, 6956566802152095744000, 1524349874113331960217600
OFFSET
0,2
COMMENTS
The denominator is b(n)= (2*n+2)!*3^(2*n+1)/((n+1)!*2^(n+1)).
FORMULA
c(n)=[(2n+2)!*3^(2n+1)/[(n+1)!*2^(n+1)]]int((1-x^2)^n, x=0..1/3). - Emeric Deutsch, Mar 15 2004
MAPLE
c := n->((2*n+2)!*3^(2*n+1)/((n+1)!*2^(n+1)))*int((1-x^2)^n, x=0..1/3): seq(c(n), n=0..18);
MATHEMATICA
A091429[n_] := Integrate[(1 - x^2)^n, {x, 0, 1/3}](2n + 2)!*3^(2n + 1)/((n + 1)!*2^(n + 1)); Table[ A091429[n], {n, 0, 13}] (* Robert G. Wilson v, Mar 15 2004 *)
CROSSREFS
Sequence in context: A241874 A330497 A037138 * A200721 A187463 A160311
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
EXTENSIONS
More terms from Robert G. Wilson v and Emeric Deutsch, Mar 15 2004
STATUS
approved