login
A091383
Prime numbers where the sequence of largest quadratic "mixed" residues modulo the primes (A091380) is non-monotonic.
5
3, 7, 31, 71, 103, 151, 199, 239, 271, 311, 359, 463, 599, 719, 823, 839, 911, 1063, 1231, 1279, 1303, 1439, 1559, 1871, 1879, 1951, 1999, 2143, 2239, 2311, 2351, 2383, 2399, 2551, 2711, 2791, 3191, 3391, 3463, 3559, 3583, 3823, 3911, 3919, 4079, 4159
OFFSET
1,1
COMMENTS
All of these primes belong to the +-1 least absolute reside classes modulo 8. (Tested for 10^5 primes.)
PROG
(PARI) {/* The primes where the sequence of the largest "mixed" QR modulo the primes is non-monotonic */ lqxr_nm_p(to)=local(v=[], k, r, q, p, e=1, n=0, i=1); while(n<to, i+=1; p=prime(i); k=p-1; r=p%4-2; while(kronecker(k, p)<>r, k-=1); if(k-e<=0, v=concat(v, p); n+=1); e=k); print(i); print(v) }
KEYWORD
easy,nonn
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu)
STATUS
approved