%I #5 Mar 14 2018 03:51:21
%S 3,7,31,71,103,151,199,239,271,311,359,463,599,719,823,839,911,1063,
%T 1231,1279,1303,1439,1559,1871,1879,1951,1999,2143,2239,2311,2351,
%U 2383,2399,2551,2711,2791,3191,3391,3463,3559,3583,3823,3911,3919,4079,4159
%N Prime numbers where the sequence of largest quadratic "mixed" residues modulo the primes (A091380) is non-monotonic.
%C All of these primes belong to the +-1 least absolute reside classes modulo 8. (Tested for 10^5 primes.)
%H Ferenc Adorjan, <a href="http://web.axelero.hu/fadorjan/qrp.pdf">The sequence of largest quadratic residues modulo the primes</a>
%o (PARI) {/* The primes where the sequence of the largest "mixed" QR modulo the primes is non-monotonic */ lqxr_nm_p(to)=local(v=[],k,r,q,p,e=1,n=0,i=1); while(n<to,i+=1;p=prime(i);k=p-1;r=p%4-2; while(kronecker(k,p)<>r,k-=1); if(k-e<=0,v=concat(v,p);n+=1);e=k); print(i);print(v) }
%Y Cf. A091380, A091381, A091382, A091384, A091385, A088190, A088193, A088199.
%K easy,nonn
%O 1,1
%A Ferenc Adorjan (fadorjan(AT)freemail.hu)