login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091380
Largest quadratic "mixed" residue modulo the n-th prime (LQxR(p_n)).
5
1, 1, 3, 4, 9, 11, 14, 17, 18, 27, 28, 35, 38, 41, 42, 51, 57, 59, 65, 76, 81, 86, 92, 99, 100, 105, 107, 110, 124, 129, 134, 137, 147, 148, 155, 161, 162, 171, 177, 179, 184, 188, 195, 196, 209, 220, 225, 227, 230, 232, 234, 249, 254, 258, 267, 268, 275, 278, 281
OFFSET
1,3
COMMENTS
Due to the quadratic reciprocity (Euler's criterion), if a prime p is congruent to 1 mod 4, then (p-1) is a quadratic residue mod p (see A088190). Also, if p is congruent -1 mod 4 then p-1 is a quadratic non-residue mod p (see A088196). This sequence is created in such a way that when p is not congruent to 1 mod 4 then the largest quadratic residue is taken, otherwise the largest quadratic non-residue taken modulo p. Thus it is a merger of A088190 and A088196 by skipping the "trivial" terms. Important observations (tested up to 10^5 primes): - the sequence of largest "mixed" residues modulo the primes (denoted by LQxR(p_n)) is 'almost' monotonic, - for n>1, p_n-LQxR(p_n) is a prime value (see A091382) - if LQxR(p_n)<=LQxR(p_{n-1}) then p_n==+-1 mod 8 (when n>2) (see A091384) - if LQxR(p_n)<=LQxR(p_{n-1}) then p_n-LQxR(p_n) is a prime q>5 (see A091385).
REFERENCES
H. Cohn, Advanced Number Theory, p. 19, Dover Publishing (1962)
FORMULA
a(1)=1; a(n>1)=max{r<p_n | -(r/p_n)=|p_n|_4}, where (r/p_n) is the Legendre symbol and |x|_m is the least absolute residue of x modulo m.
PROG
(PARI) {/* Sequence of the largest "mixed" QR modulo the primes */ lqxr(to)=local(v=[1], k, r, q); for(i=2, to, k=prime(i)-1; r=prime(i)%4-2; while(kronecker(k, prime(i))<>r, k-=1); v=concat(v, k)); print(v) }
KEYWORD
nonn,easy
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu)
STATUS
approved