login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088196
Largest number that is not a quadratic residue modulo prime(n).
9
2, 3, 6, 10, 11, 14, 18, 22, 27, 30, 35, 38, 42, 46, 51, 58, 59, 66, 70, 68, 78, 82, 86, 92, 99, 102, 106, 107, 110, 126, 130, 134, 138, 147, 150, 155, 162, 166, 171, 178, 179, 190, 188, 195, 198, 210, 222, 226, 227, 230, 238, 234, 250, 254, 262, 267, 270, 275, 278
OFFSET
2,1
COMMENTS
These are sometimes called quadratic non-residues modulo p(n). Denote a(n) by LQnR(p_n).
PROG
(PARI) qnrp(fr, n)= {/* The largest QnR modulo the primes */ local(m, p, fl, jj, j, v=[]); fr=max(fr, 2); for(i=fr, n, m=0; p=prime(i); jj=0; fl=2^p-1; j=2; while((j<=(p-1)/2), jj=(j^2)%p; fl-=2^jj; j++); j=p-1; while(m==0, if(bitand(2^j, fl), m=j); j--); v=concat(v, m)); print(v)}
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ferenc Adorjan (fadorjan(AT)freemail.hu), Sep 23 2003
STATUS
approved