|
|
A091259
|
|
Numerator of sigma_3(n)/sigma(n).
|
|
4
|
|
|
1, 3, 7, 73, 21, 21, 43, 39, 757, 63, 111, 73, 157, 129, 147, 151, 273, 2271, 343, 219, 301, 333, 507, 273, 15751, 471, 511, 3139, 813, 441, 931, 4161, 777, 819, 903, 55261, 1333, 1029, 1099, 819, 1641, 903, 1807, 8103, 15897, 1521, 2163, 1057, 39331, 47253
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
If n is prime then a(n) = A002061(n). - Robert Israel, Jan 25 2018
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
seq(numer(numtheory:-sigma[3](n)/numtheory:-sigma(n)), n=1..100); # Robert Israel, Jan 25 2018
|
|
MATHEMATICA
|
Array[Numerator[DivisorSigma[3, #]/DivisorSigma[1, #]]&, 50] (* Harvey P. Dale, Feb 29 2016 *)
|
|
PROG
|
(PARI) a(n) = numerator(sigma(n, 3)/sigma(n)); \\ Michel Marcus, Jan 26 2018
(MAGMA) [Numerator(DivisorSigma(3, n)/DivisorSigma(1, n)): n in [1..50]]; // Vincenzo Librandi, Jan 26 2018
|
|
CROSSREFS
|
Cf. A001158, A000203, A002061, A091258, A091260.
Sequence in context: A209477 A209336 A078552 * A354891 A354893 A342546
Adjacent sequences: A091256 A091257 A091258 * A091260 A091261 A091262
|
|
KEYWORD
|
easy,nonn,frac,look
|
|
AUTHOR
|
Labos Elemer, Feb 12 2004
|
|
STATUS
|
approved
|
|
|
|