login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091114
Number of partitions of n-th composite number containing the smallest prime factor: a(n) = A027293(A002808(n), A056608(n)).
2
2, 5, 11, 11, 22, 42, 77, 77, 135, 231, 385, 385, 627, 1002, 627, 1575, 1575, 2436, 3718, 5604, 5604, 8349, 5604, 12310, 17977, 17977, 26015, 37338, 53174, 53174, 75175, 105558, 53174, 147273, 147273, 204226, 281589, 204226, 386155, 386155
OFFSET
1,1
COMMENTS
a(n) = A000041(A002808(n)) - A091094(n).
a(n) = A000041(A085271(n)). - Charlie Neder, Jan 10 2019
EXAMPLE
n=2: A002808(2)=6=2*3 has A000041(6)=11 partitions: 6 = 5+1 = 4+2 = 4+1+1 = 3+3 = 3+2+1 = 3+1+1+1 = 2+2+2 = 2+2+1+1 = 2+1+1+1+1 = 1+1+1+1+1+1, 2 occurs in 5 partitions, therefore a(2)=5.
PROG
(PARI) lista(nn) = forcomposite(n=2, nn, print1(numbpart(n - divisors(n)[2]), ", ")); \\ Michel Marcus, Jan 11 2019
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 22 2004
STATUS
approved