login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090950
a(n) = (1/24)*(n+1)*(n+3)*(n^2+22*n+88).
1
0, 11, 37, 85, 163, 280, 446, 672, 970, 1353, 1835, 2431, 3157, 4030, 5068, 6290, 7716, 9367, 11265, 13433, 15895, 18676, 21802, 25300, 29198, 33525, 38311, 43587, 49385, 55738, 62680, 70246, 78472, 87395, 97053, 107485, 118731, 130832, 143830, 157768
OFFSET
-1,2
LINKS
P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
FORMULA
From G. C. Greubel, Feb 04 2019: (Start)
G.f.: (11 -18*x +10*x^2 -2*x^3)/(1-x)^5.
E.g.f.: (264 +624*x +264*x^2 +32*x^3 +x^4)*exp(x)/24. (End)
MAPLE
A090950:=n->(1/24)*(n+1)*(n+3)*(n^2+22*n+88): seq(A090950(n), n=-1..80); # Wesley Ivan Hurt, Apr 26 2017
MATHEMATICA
Table[(n+1)*(n+3)*(n^2+22*n+88)/24, {n, -1, 30}] (* G. C. Greubel, Feb 04 2019 *)
PROG
(PARI) a(n) = (n+1)*(n+3)*(n^2+22*n+88)/24; \\ Michel Marcus, Jan 12 2016
(Magma) [(n+1)*(n+3)*(n^2+22*n+88)/24: n in [-1..30]]; // G. C. Greubel, Feb 04 2019
(Sage) [(n+1)*(n+3)*(n^2+22*n+88)/24 for n in (-1..30)] # G. C. Greubel, Feb 04 2019
(GAP) List([-1..30], n -> (n+1)*(n+3)*(n^2+22*n+88)/24); # G. C. Greubel, Feb 04 2019
CROSSREFS
Sequence in context: A337832 A188135 A188382 * A217947 A124479 A140373
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 28 2004
STATUS
approved