login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090949
a(n) = (1/24)*(n+1)*(3*n^3+59*n^2+358*n+648).
1
0, 27, 89, 203, 389, 670, 1072, 1624, 2358, 3309, 4515, 6017, 7859, 10088, 12754, 15910, 19612, 23919, 28893, 34599, 41105, 48482, 56804, 66148, 76594, 88225, 101127, 115389, 131103, 148364, 167270, 187922, 210424, 234883, 261409, 290115, 321117, 354534
OFFSET
-1,2
LINKS
P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
FORMULA
From G. C. Greubel, Feb 04 2019: (Start)
G.f.: (27 -46*x +28*x^2 -6*x^3)/(1-x)^5.
E.g.f.: (648 +1488*x +624*x^2 +80*x^3 +3*x^4)*exp(x)/24. (End)
MATHEMATICA
Table[((n+1)(3n^3+59n^2+358n+648))/24, {n, -1, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 27, 89, 203, 389}, 40] (* Harvey P. Dale, Oct 09 2017 *)
PROG
(PARI) a(n) = (n+1)*(3*n^3+59*n^2+358*n+648)/24; \\ Michel Marcus, Jan 12 2016
(Magma) [(n+1)*(3*n^3+59*n^2+358*n+648)/24: n in [-1..30]]; // G. C. Greubel, Feb 04 2019
(Sage) [(n+1)*(3*n^3+59*n^2+358*n+648)/24 for n in (-1..30)] # G. C. Greubel, Feb 04 2019
(GAP) List([-1..30], n -> (n+1)*(3*n^3+59*n^2+358*n+648)/24); # G. C. Greubel, Feb 04 2019
CROSSREFS
Sequence in context: A007266 A098320 A034990 * A043434 A044214 A044595
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 28 2004
STATUS
approved