OFFSET
-1,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
P. Erdős, R. K. Guy and J. W. Moon, On refining partitions, J. London Math. Soc., 9 (1975), 565-570.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
From G. C. Greubel, Feb 04 2019: (Start)
G.f.: (27 -46*x +28*x^2 -6*x^3)/(1-x)^5.
E.g.f.: (648 +1488*x +624*x^2 +80*x^3 +3*x^4)*exp(x)/24. (End)
MATHEMATICA
Table[((n+1)(3n^3+59n^2+358n+648))/24, {n, -1, 40}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {0, 27, 89, 203, 389}, 40] (* Harvey P. Dale, Oct 09 2017 *)
PROG
(PARI) a(n) = (n+1)*(3*n^3+59*n^2+358*n+648)/24; \\ Michel Marcus, Jan 12 2016
(Magma) [(n+1)*(3*n^3+59*n^2+358*n+648)/24: n in [-1..30]]; // G. C. Greubel, Feb 04 2019
(Sage) [(n+1)*(3*n^3+59*n^2+358*n+648)/24 for n in (-1..30)] # G. C. Greubel, Feb 04 2019
(GAP) List([-1..30], n -> (n+1)*(3*n^3+59*n^2+358*n+648)/24); # G. C. Greubel, Feb 04 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 28 2004
STATUS
approved