login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090878
Numerator of Integral_{x=0..infinity} exp(-x)*(1+x/n)^n dx.
11
2, 5, 26, 103, 2194, 1223, 472730, 556403, 21323986, 7281587, 125858034202, 180451625, 121437725363954, 595953719897, 26649932810926, 3211211914492699, 285050975993898158530, 549689343118061, 640611888918574971191834
OFFSET
1,1
COMMENTS
Also numerators of e_n(n) where e_n(x) is the exponential sum function exp_n(x) and where denominators are given by either A095996 (largest divisor of n! that is coprime to n) or A036503 (denominator of n^(n-2)/n!). - Gerald McGarvey, Nov 14 2005
a(n) is a multiple of A120266(n) or equals A120266(n), A120266(n) is numerator of Sum_{k=0..n} n^k/k!, the integral = (n-1)!/n^(n-1) * the Sum. - Gerald McGarvey, Apr 17 2008
The integral = (1/n^n)*A063170[n] (Schenker sums with n-th term, Integral_{x>0} exp(-x)*(n+x)^n dx). - Gerald McGarvey, Apr 17 2008
Expected value in the birthday paradox problem. Let X be a random variable that assigns to each f:{1,2,...,n+1}->{1,2,...,n} the smallest k in {2,3,...,n+1} such that f(k)=f(j) for some j < k. a(n)/A036505(offset=1) = E(X) the expected value of X. For n=365 E(X) is (surprising low) approximately 24. - Geoffrey Critzer, May 18 2013
Also numerator of Sum_{k=0..n} binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) [Prodinger]. N. J. A. Sloane, Jul 31 2013
LINKS
Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
Eric Weisstein, Exponential Sum Function
FORMULA
a(n) = A036505(n-1)*Sum_{k=0..n} (A128433(n)/A128434(n)). - Reinhard Zumkeller, Mar 03 2007
MATHEMATICA
f[n_]:= Integrate[E^(-x)*(1+x/n)^n, {x, 0, Infinity}]; Table[Numerator[ f[n]], {n, 1, 20}]
Table[Numerator[1 + Sum[If[k==0, 1, Binomial[n, k]*(k/n)^k*((n-k)/n)^(n-k)], {k, 0, n-1}]], {n, 1, 20}] (* G. C. Greubel, Feb 08 2019 *)
PROG
(PARI) vector(20, n, numerator(sum(k=0, n, binomial(n, k)*(k/n)^k*((n-k)/n)^(n-k)))) \\ G. C. Greubel, Feb 08 2019
(Magma) [Numerator((&+[Binomial(n, k)*(k/n)^k*((n-k)/n)^(n-k): k in [0..n]])): n in [1..20]]; // G. C. Greubel, Feb 08 2019
(Sage) [numerator(sum(binomial(n, k)*(k/n)^k*((n-k)/n)^(n-k) for k in (0..n))) for n in (1..20)] # G. C. Greubel, Feb 08 2019
CROSSREFS
Denominators are in A036505.
Sequence in context: A221679 A178390 A045903 * A214951 A333004 A120762
KEYWORD
nonn,frac
AUTHOR
Robert G. Wilson v, Feb 13 2004
EXTENSIONS
Definition corrected by Gerald McGarvey, Apr 17 2008
STATUS
approved