OFFSET
1,1
COMMENTS
Also numerators of e_n(n) where e_n(x) is the exponential sum function exp_n(x) and where denominators are given by either A095996 (largest divisor of n! that is coprime to n) or A036503 (denominator of n^(n-2)/n!). - Gerald McGarvey, Nov 14 2005
a(n) is a multiple of A120266(n) or equals A120266(n), A120266(n) is numerator of Sum_{k=0..n} n^k/k!, the integral = (n-1)!/n^(n-1) * the Sum. - Gerald McGarvey, Apr 17 2008
The integral = (1/n^n)*A063170[n] (Schenker sums with n-th term, Integral_{x>0} exp(-x)*(n+x)^n dx). - Gerald McGarvey, Apr 17 2008
Expected value in the birthday paradox problem. Let X be a random variable that assigns to each f:{1,2,...,n+1}->{1,2,...,n} the smallest k in {2,3,...,n+1} such that f(k)=f(j) for some j < k. a(n)/A036505(offset=1) = E(X) the expected value of X. For n=365 E(X) is (surprising low) approximately 24. - Geoffrey Critzer, May 18 2013
Also numerator of Sum_{k=0..n} binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) [Prodinger]. N. J. A. Sloane, Jul 31 2013
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..250
Helmut Prodinger, An identity conjectured by Lacasse via the tree function, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
Eric Weisstein, Exponential Sum Function
FORMULA
MATHEMATICA
f[n_]:= Integrate[E^(-x)*(1+x/n)^n, {x, 0, Infinity}]; Table[Numerator[ f[n]], {n, 1, 20}]
Table[Numerator[1 + Sum[If[k==0, 1, Binomial[n, k]*(k/n)^k*((n-k)/n)^(n-k)], {k, 0, n-1}]], {n, 1, 20}] (* G. C. Greubel, Feb 08 2019 *)
PROG
(PARI) vector(20, n, numerator(sum(k=0, n, binomial(n, k)*(k/n)^k*((n-k)/n)^(n-k)))) \\ G. C. Greubel, Feb 08 2019
(Magma) [Numerator((&+[Binomial(n, k)*(k/n)^k*((n-k)/n)^(n-k): k in [0..n]])): n in [1..20]]; // G. C. Greubel, Feb 08 2019
(Sage) [numerator(sum(binomial(n, k)*(k/n)^k*((n-k)/n)^(n-k) for k in (0..n))) for n in (1..20)] # G. C. Greubel, Feb 08 2019
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Robert G. Wilson v, Feb 13 2004
EXTENSIONS
Definition corrected by Gerald McGarvey, Apr 17 2008
STATUS
approved