Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:45:12
%S 2,5,26,103,2194,1223,472730,556403,21323986,7281587,125858034202,
%T 180451625,121437725363954,595953719897,26649932810926,
%U 3211211914492699,285050975993898158530,549689343118061,640611888918574971191834
%N Numerator of Integral_{x=0..infinity} exp(-x)*(1+x/n)^n dx.
%C Also numerators of e_n(n) where e_n(x) is the exponential sum function exp_n(x) and where denominators are given by either A095996 (largest divisor of n! that is coprime to n) or A036503 (denominator of n^(n-2)/n!). - _Gerald McGarvey_, Nov 14 2005
%C a(n) is a multiple of A120266(n) or equals A120266(n), A120266(n) is numerator of Sum_{k=0..n} n^k/k!, the integral = (n-1)!/n^(n-1) * the Sum. - _Gerald McGarvey_, Apr 17 2008
%C The integral = (1/n^n)*A063170[n] (Schenker sums with n-th term, Integral_{x>0} exp(-x)*(n+x)^n dx). - _Gerald McGarvey_, Apr 17 2008
%C Expected value in the birthday paradox problem. Let X be a random variable that assigns to each f:{1,2,...,n+1}->{1,2,...,n} the smallest k in {2,3,...,n+1} such that f(k)=f(j) for some j < k. a(n)/A036505(offset=1) = E(X) the expected value of X. For n=365 E(X) is (surprising low) approximately 24. - _Geoffrey Critzer_, May 18 2013
%C Also numerator of Sum_{k=0..n} binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) [Prodinger]. _N. J. A. Sloane_, Jul 31 2013
%H G. C. Greubel, <a href="/A090878/b090878.txt">Table of n, a(n) for n = 1..250</a>
%H Helmut Prodinger, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i3p7/0">An identity conjectured by Lacasse via the tree function</a>, Electronic Journal of Combinatorics, 20(3) (2013), #P7.
%H Eric Weisstein, <a href="http://mathworld.wolfram.com/ExponentialSumFunction.html">Exponential Sum Function</a>
%F a(n) = A036505(n-1)*Sum_{k=0..n} (A128433(n)/A128434(n)). - _Reinhard Zumkeller_, Mar 03 2007
%t f[n_]:= Integrate[E^(-x)*(1+x/n)^n, {x,0,Infinity}]; Table[Numerator[ f[n]], {n, 1, 20}]
%t Table[Numerator[1 + Sum[If[k==0,1,Binomial[n,k]*(k/n)^k*((n-k)/n)^(n-k)], {k,0,n-1}]], {n,1,20}] (* _G. C. Greubel_, Feb 08 2019 *)
%o (PARI) vector(20, n, numerator(sum(k=0, n, binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k)))) \\ _G. C. Greubel_, Feb 08 2019
%o (Magma) [Numerator((&+[Binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k): k in [0..n]])): n in [1..20]]; // _G. C. Greubel_, Feb 08 2019
%o (Sage) [numerator(sum(binomial(n,k)*(k/n)^k*((n-k)/n)^(n-k) for k in (0..n))) for n in (1..20)] # _G. C. Greubel_, Feb 08 2019
%Y Denominators are in A036505.
%Y Cf. A120266, A063170.
%K nonn,frac
%O 1,1
%A _Robert G. Wilson v_, Feb 13 2004
%E Definition corrected by _Gerald McGarvey_, Apr 17 2008