login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089342
Numerator of sqrt(2) * Integral_{x=0..sqrt(1/3)} 1/(1-x^2)^(n+3/2) dx.
2
1, 7, 83, 467, 10307, 56537, 620695, 3421003, 151692131, 846015389, 1356505339, 7657542115, 173845651297, 991488244363, 79507898457503, 457142023114427, 42194359402773923, 244118009518249157, 2831917415062783681, 16462724429712384049, 383563872480791378989
OFFSET
0,2
EXAMPLE
1/1, 7/6, 83/60, 467/280, 10307/5040, 56537/22176, 620695/192192, 3421003/823680, 151692131/28005120, 846015389/118243840, 1356505339/141892608, ... = A089342/A256442.
MAPLE
a:= n-> numer(sqrt(2)*int(1/(1-x^2)^(n+3/2), x=0..sqrt(1/3))):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 29 2015
MATHEMATICA
f[n_] := Numerator[ Simplify[ Sqrt[2]*Integrate[1/(1 - x^2)^(n + 1/2), {x, 0, Sqrt[1/3]}]]]; Table[ f[n], {n, 1, 20}] (* Robert G. Wilson v, Feb 27 2004 *)
Numerator[Table[Sqrt[2/3] * Hypergeometric2F1[1/2, n+3/2, 3/2, 1/3], {n, 0, 20}]] (* Vaclav Kotesovec, Apr 08 2015 *)
a[n_] := Hypergeometric2F1[-n, 1/2, 3/2, -1/2]
Table[Numerator[a[n]], {n, 0, 20}] (* Gerry Martens, Aug 09 2015 *)
CROSSREFS
Denominators are in A256442.
Sequence in context: A304591 A139951 A141872 * A297716 A075137 A268704
KEYWORD
nonn,frac
AUTHOR
Al Hakanson (hawkuu(AT)excite.com), Dec 26 2003
EXTENSIONS
More terms from Robert G. Wilson v, Feb 27 2004
STATUS
approved