|
|
A089207
|
|
a(n) = 4n^3 + 2n^2.
|
|
0
|
|
|
6, 40, 126, 288, 550, 936, 1470, 2176, 3078, 4200, 5566, 7200, 9126, 11368, 13950, 16896, 20230, 23976, 28158, 32800, 37926, 43560, 49726, 56448, 63750, 71656, 80190, 89376, 99238, 109800, 121086, 133120, 145926, 159528, 173950, 189216
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Yet another parametric representation of the solutions of the Diophantine equation x^2 - y^2 = z^3 is (3n^3, n^3, 2n^2). By taking the sum x+y+z we get a(n) = 4n^3 + 2n^2.
If Y is a 3-subset of an 2n-set X then, for n>=5, a(n-2) is the number of 5-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
|
|
LINKS
|
Table of n, a(n) for n=1..36.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
|
|
FORMULA
|
a(n) = 2*A099721(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: 2*x*(3+8*x+x^2)/(x-1)^4. [R. J. Mathar, Apr 20 2009]
a(n) = 2 * n * A014105(n). - Richard R. Forberg, Jun 16 2013
|
|
MATHEMATICA
|
Table[4n^3+2n^2, {n, 40}] (* Harvey P. Dale, Jun 12 2020 *)
|
|
CROSSREFS
|
Cf. A085409, A087887.
Sequence in context: A229638 A210291 A336317 * A318169 A027777 A227013
Adjacent sequences: A089204 A089205 A089206 * A089208 A089209 A089210
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Dec 09 2003
|
|
EXTENSIONS
|
More terms from Ray Chandler, Feb 15 2004
|
|
STATUS
|
approved
|
|
|
|